
TECHNICAL
PAPER

page 1 of 14Corigine Inc.

METHODOLOGY
This chapter describes the general methods used for testing the Agilio-CX-4000 intelligent

server adapter as well as software based OVS.

Setup
The following hardware and software was used for the device under test:

 Server: Dell PowerEdge R730

 CPU: Intel Xeon CPU E5-2670 v3 @2.3Ghz with 64GB of DRAM

 Operating System: Ubuntu 14.04.3 LTS

 Kernel Version: 3.13.0-57-generic

 Open vSwitch: v2.3.90

 Server Adapters:

 Intel XL710 for software (Kernel and User) OVS

 Agilio®-CX4000-40Q-10 with LNOD2.1 for accelerated OVS

 Test Generator: IXIA/Spirent

The test setups used for Kernel and User software OVS on the XL710 and accelerated OVS on

the Agilio®-CX4000 are shown in the diagrams below:

OVS Test Plan
BENCHMARKING TEST SUITE

CONTENTS

METHODOLOGY ..1

USE CASES ..3

MEASUREMENT RESULTS..3

SCRIPTS AND METHODS ... 4

THIS DOCUMENT GOES

THROUGH A LIST OF

BENCHMARK TESTSFOR

OPEN VSWITCH

ACCELERATED BY THE

CORIGINE AGILIO-

CX-4000 INTELLIGENT

SERVER ADAPTER, TO

COMPARE AGAINST

NON-ACCELERATED

OPEN VSWITCH RUNNING

ENTIRELY IN SOFTWARE

ON THE SERVER WITH A

BASIC NIC.

TECHNICAL PAPER: OVS Test Plan

page 2 of 14Corigine Inc.

OVS
Control

Kernel OVS Datapath

Traffic Generator

Kernel OVS

XL-710

App

VM

Netdev/
PMD

App

VM

Netdev/
PMD

OVS
Control

Kernel
OVS Datapath

Agilio OVS Datapath

Traffic Generator

Agilio OVS

Agilio-CX

App

VM

Netdev/
PMD

App

VM

Netdev/
PMD

OVS
Control

DPDK OVS Datapath

Traffic Generator

User OVS

XL-710

App

VM

Netdev/
PMD

App

VM

Netdev/
PMD

In this test plan, a separate host is used for traffic generation/termination. Alternatively, an

IXIA or Spirent Traffic generator may also be used, with appropriate test scripts.

Test Traffic Profile
Following is a description of the traffic patterns used for all testing described within this

document. Note that when multiple traffic generators are deployed, such as when generating

traffic within the VMs, the same pattern will be generated by each traffic generator instance.

A total of 64,000 flows will be generated by each instance. The generator will send one

packet per flow for the first 2,000 flows and will then repeat these same 2,000 flows 10 times.

Next it will in a similar fashion sequence through the second set of 2,000 flows 10 times. This

will continue until all 64,000 flows have been covered at which point the sequence will start

all over again.

The above described traffic pattern can be regarded as a realistic representation of real traffic

where flows are very active for a short time and then disappear.

Wild Card Rules
For every test, OVS is configured with 1,000 wild card rules either matching against L2 fields

or L3 fields.

L2 Wild Card Rules and Actions
The L2 rules match against the input port and a contiguous set of bits in the destination MAC

address, aligned to the least significant end. The first 512 rules match against the nine least

significant bits, while the remaining rules match against longer bit strings, thus overlapping

with the first group.

The action is an output port. For the network-to-VM use case, the rules act as a load-balancer

towards the VMs. For the VM-to-network use case, all traffic is directed towards the physical

port (or the VXLAN tunnel). For the VM-to-VM use case, the 1,000 rules connect the four VMs

in a full mesh. In other words, traffic from any VM will be evenly distributed (based on the

destination MAC address) to the other three VMs.

TECHNICAL PAPER: OVS Test Plan

page 3 of 14Corigine Inc.

	

	

	

	

	

	

	

L3 Wild Card Rules and Actions
The L3 rules match against input port and a contiguous set of bits in the destination IP ad-

dress, aligned to the least significant bits.

The action of these rules is to modify both the MAC addresses, decrement the IP header TTL,

and direct the packets to an output port in a similar fashion as the L2 rules.

Measurements
For each use case, measurements of both the packet rate and bit rate will be taken. The traffic

will have a fixed packet size, where separate measurements will be taken for the frame sizes

64, 128, 256, 512, 1024, and 1514 bytes.

Further, all the above measurements will be taken for both the L2 and the L3 rule sets.

Finally, except for the VM-to-VM use case, measurements will be taken with both VXLAN

enabled and disabled.

Traffic Generation Test Tool
A Corigine-developed DPDK-based test tool, named trafgen, is used for generating traffic but

also for terminating traffic and for collecting statistics. This tool has a range of command line

options for specifying parameters like:

■ Mode (traffic generation, echo traffic, terminate traffic),

■ Test Duration,

■ MAC addresses,

■ IP addresses

■ Traffic rate

■ Packet size

■ Flow profile

USE CASES
Three different basic use cases are tested.

Use Case: Network to VM
In this test case, traffic will be received on the physical port of the DUT and distributed to four

VMs based on the rule set. Each VM will run the Corigine-developed DPDK packet analysis

tool, which will report the received bit rate and packet rate.

Use Case: VM to Network
In this test, traffic is generated within a set of four VMs and directed out via the DUT’s physical

port via the rule set.

Traffic is generated by the Corigine-developed packet generator tool trafgen via a DPDK port.

On the DUT host, a common OVS bridge will be used and all rules of the rule set will direct the

traffic towards the physical 40 GE port.

Use Case: VM to VM
In this test, traffic is exchanged between VMs running within the DUT host.

TECHNICAL PAPER: OVS Test Plan

page 4 of 14Corigine Inc.

	

	

	

	

	

	

	

	

The traffic is generated and terminated by the Corigine-developed test tool trafgen, which is

connected to the DPDK port inside of the VM.

The virtual function ports will be connected to one shared OVS bridge on the host and all traf-

fic will be matched against exactly one wild-card rule. The rules in the rule set will implement

a full mesh, with traffic from one VM distributed to the other three VMs.

MEASUREMENT RESULTS
For each use case, and each traffic profile (L2, L3, VLAN, and VXLAN), packets-per-second

throughput is measured and recorded for the stated packet sizes. Results are compared

between Agilio OVS and software OVS (both kernel and user modes).

SCRIPTS AND METHODS
This section contains the scripts and commands needed for configuring the various use cases.

Before running any of these it is assumed that the Agilio-CX 4000 and the LNOD have been

properly installed on a server, that VMs have been created, and finally, that LNOD has been in-

stalled on the VMs. Information about how to do this can be found in the LNOD User’s Guide.

Preparing the VMs
As specified above, this section assumes that the LNOD software has been installed on all

VMs.

Building DPDK Test Application inside a VM
Script name: build-vm-dpdk-apps.sh

The following script, which is run on the host, will copy the source code of DPDK applications

and build them inside of a VM.

The steps involved:

■ Copy the source code of the trafgen tool onto the target.

■ Copy the source code of general DPDK example applications onto the target.

■ Create a script-string of actions to take on the target:

— Set the RTE_SDK and RTE_TARGET variables.

— Set the RTE_OUTPUT to a build directory and create this directory.

— Build the tool with make.

 — Copy the resulting executable to /usr/local/bin.

■ Execute the script-string on the target.

#!/bin/bash

IP address of VM
vmipa=”$1”
shift 1
List of DPDK applications
applist=”$*”

##
Usage:

TECHNICAL PAPER: OVS Test Plan

page 5 of 14Corigine Inc.

#
build-vm-dpdk-apps.sh 10.0.0.1 trafgen l2fwd
#
##

if [“$1” == “”] || [“$1” == “--help”]; then
 echo “Usage: <vmipa> <application> [<application> ...]”
 exit 0
fi

##

The ‘trafgen’ application is in pkgs/dpdk/src
rsync -aq -R /opt/netronome/samples/dpdk/./trafgen $vmipa:dpdk/src

Copy Standard DPDK example applications to VM
rsync -aq /opt/netronome/srcpkg/dpdk-ns/examples/* $vmipa:dpdk/src

scr=””
scr=”$scr export RTE_SDK=/opt/netronome/srcpkg/dpdk-ns &&”
scr=”$scr export RTE_TARGET=x86_64-native-linuxapp-gcc &&”
for appname in $applist ; do
 tooldir=”dpdk/src/$appname”
 scr=”$scr echo ‘Build ‘$appname &&”
 scr=”$scr export RTE_OUTPUT=\$HOME/.cache/dpdk/build/$appname &&”
 scr=”$scr mkdir -p \$RTE_OUTPUT &&”
 scr=”$scr make --no-print-directory -C \$HOME/$tooldir &&”
 scr=”$scr cp \$RTE_OUTPUT/$appname /usr/local/bin &&”
done
scr=”$scr echo ‘Success’”

exec ssh $vmipa “$scr”

Setup Virtual Function as a DPDK port inside of a VM
Script name: setup-vm-vf-iface.sh

This script will attach a specific driver to the virtual function inside of a VM. For turning a VF

into a DPDK port, then specify the interface driver (ifdrv) to be nfp_uio. On the other hand, if

one wants to use the VF as a Linux netdev, then use the nfp_netvf driver.

The steps involved:

	■ Create a script-string of actions to take on the target:

	— Do a modprobe on the kernel driver to make sure that it is loaded.

	— Extract the ‘bus/dev/func’ information via the ethtool.

	— Remove any IP address from the interface and set it to DOWN.

	— Use the dpdk_nic_bind.py script to bind the specified driver to the VF.

	— Save the ‘bus/dev/func’ information to a file on the VM.

	■ Execute the script-string on the target.

#!/bin/bash

IP address of VM
vmipa=”$1”
Interface name inside of VM of SR-IOV virtual function
vmifname=”$2”

TECHNICAL
PAPER

page 6 of 14Corigine Inc.

Interface device driver to attach to the virtual function
ifdrv=”$3”

Location of DPDK bind tool
bind=”/opt/netronome/srcpkg/dpdk-ns/tools/dpdk_nic_bind.py”

scr=””
Make sure the driver is loaded into the kernel
scr=”$scr modprobe $ifdrv &&”
Extract the PCI ‘bus/device/function’ information of the ‘NFP’ Virtu-
al Function
scr=”$scr bdf=\$($bind --status | sed -rn ‘s/^(\S+)\s.*Device\
s6003.*$/\1/p’) &&”
Make sure IPv4 is disable on interface and set it to admin-DOWN
scr=”$scr grep $vmifname /proc/net/dev > /dev/null”
scr=”$scr && ifconfig $vmifname 0 down ;”
Bind the driver to the virtual-function
scr=”$scr $bind -b $ifdrv \$bdf ;”
Save the ‘bus/device/function’ information for other scripts
scr=”$scr echo \$bdf > /var/opt/bdf-ns-vf.txt ;”

Remotely login to the VM and execute the above commands
ssh $vmipa “$scr”

Setup HugePages on a VM
Script name: setup-vm-hugepages.sh

This script will attach configure hugepages on a target VM.

The steps involved:

	■ Create a script-string of actions to take on the target:

	— Create the mount point /mnt/huge.

	— Mount the hugetlbfs onto this mount point.

	— Reserve 512 hugepages.

	■ Execute the script-string on the target.

#!/bin/bash

Setup hugepages feature on VM

ipaddr=”$1”

scr=””
scr=”$scr mkdir -p /mnt/huge ;”
scr=”$scr (grep hugetlbfs /proc/mounts > /dev/null ||”
scr=”$scr mount -t hugetlbfs huge /mnt/huge) ;”
scr=”$scr echo 512 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_huge-
pages”

ssh $ipaddr “$scr”

TECHNICAL PAPER: OVS Test Plan

page 7 of 14Corigine Inc.

Preparing the VMs
The following script assumes that all VMs are running and accessible via SSH. It further as-

sumes that a virtual function has been exported (PCI pass-through) into the VM and that the

associated interface has been named ‘int’. Further, this script makes use of the VM-specific

scripts above.

Example of a VM IP address list (adjust as needed)
vmipaddrlist=”10.0.0.10 10.0.0.11 10.0.0.12 10.0.0.13”

for ipaddr in $vmipaddrlist ; do
 build-vm-dpdk-apps.sh $ipaddr trafgen
 setup-vm-vf-iface.sh $ipaddr int nfp_uio
 setup-vm-hugepages.sh $ipaddr
done

VM Traffic Generation/Termination Scripts
Traffic Analyzer Test Tool Start Script
Script name: start-vm-dpdk-sink.sh

This script, started from within a VM, starts a Netronome-provided DPDK traffic sink applica-

tion. It counts received packets and does also estimate the packet rate.

#!/bin/bash

ipa=”$1”

if [! -f /var/opt/bdf-ns-vf.txt]; then
 echo “ERROR: Missing PCIe bus/device/func file”
 echo “ First use: setup-vm-vf-iface.sh <vm ipa> int nfp_uio”
 exit -1
fi

Compose the full command line
cmd=”trafgen”
cmd=”$cmd -n 1 -c 3”
cmd=”$cmd -d /opt/netronome/lib/librte_pmd_nfp_net.so”
cmd=”$cmd -w $(cat /var/opt/bdf-ns-vf.txt)”
cmd=”$cmd --”
cmd=”$cmd -p 1”

Capture the full command line into a file (for debug)
echo $cmd > /tmp/cmdline-pkt-sink

exec $cmd

Traffic Generator Test Tool Start Script
Script name: start-vm-dpdk-source.sh

This script, started from within a VM, starts a Netronome-provided DPDK traffic generator

application. The scripts configures the traffic generator with pertinent parameters for the

tests performed within the scope of this document. The only variable is the packet size which

needs to be specified on the command line. In addition to generating traffic, this tool also

counts received packets.

TECHNICAL PAPER: OVS Test Plan

page 8 of 14Corigine Inc.

#!/bin/bash

pktsize=”$1”

if [! -f /var/opt/bdf-ns-vf.txt]; then
 echo “ERROR: Missing PCIe bus/device/func file”
 echo “ First use: setup-vm-vf-iface.sh <vm ipa> int nfp_uio”
 exit -1
fi

if [“$pktsize” == “”]; then
 echo “ERROR: please specify packet size”
 exit -1
fi

cmd=”trafgen”
DPDK EAL configuration
cmd=”$cmd -n 4 -c 3”
cmd=”$cmd --socket-mem 256”
cmd=”$cmd --proc-type auto”
cmd=”$cmd --file-prefix trafgen_source_”
cmd=”$cmd -d /opt/netronome/lib/librte_pmd_nfp_net.so”
cmd=”$cmd -w $(cat /var/opt/bdf-ns-vf.txt)”
Delimiter between EAL arguments and application arguments
cmd=”$cmd --”
Port bit-mask
cmd=”$cmd --portmask 1”

Benchmark Mode
cmd=”$cmd --benchmark”

Count (duration of test in seconds, unspecified: indefinitely)
#cmd=”$cmd --runtime 3599”
Ethernet and IP parameters
cmd=”$cmd --src-mac 00:11:22:33:44:00”
cmd=”$cmd --dst-mac 00:44:33:22:11:00”
cmd=”$cmd --src-ip 1.0.0.0”
cmd=”$cmd --dst-ip 2.0.0.0”
Packet Size
cmd=”$cmd --packet-size $pktsize”
Packet Rate (0: full rate)
cmd=”$cmd -r 0”
Transmit Burst Size {1..128} (DPDK: tx_burst_size, default: 32)
cmd=”$cmd -t 16”

Flows within ‘Stream’ (flows_per_stream, default: 65536)
cmd=”$cmd --flows-per-stream 2000”
Number of Streams (number_of_streams, default: 1)
cmd=”$cmd --streams 8”
Number of Repeats of Stream
cmd=”$cmd --bursts-per-stream 10”

Save command line to a file
echo “$cmd” > /tmp/cmdline-pkt-src

Run command
exec $cmd

TECHNICAL PAPER: OVS Test Plan

page 9 of 14Corigine Inc.

Agilio-Based Traffic Generator Scripts
One option for traffic generation/termination is to use a second host with an Agilio-CX 4000

card and LNOD installed.

Setup script
Script name: setup-traffic-generator-server.sh

This first script prepares the Traffic Generator Server for either traffic generation or termina-

tion. It is assumed that the test tool source code is in the $HOME/trafgen directory.

By specifying the VXLAN on the command line, the script will configure a VXLAN tunnel over

the physical interface.

#!/bin/bash

This script will build the Netronome traffic test tool ‘trafgen’
and prepare OVS and DPDK for either traffic generation or termination.

if [“$1” == “VXLAN”]; then
 VXLAN=”yes”
fi

##
Build Test-tool application

export RTE_SDK=”/opt/netronome/srcpkg/dpdk-ns”
export RTE_TARGET=”x86_64-native-linuxapp-gcc”
export RTE_OUTPUT=”$HOME/.cache/dpdk/trafgen”
mkdir -p $RTE_OUTPUT
make -C $HOME/trafgen
cp -f $RTE_OUTPUT/trafgen /usr/local/bin

##
Clean-up all existing OVS bridges

for brname in $(ovs-vsctl list-br) ; do
 ovs-vsctl del-br $brname
 sleep 0.5
done

##
Setup ‘Huge Pages’
mkdir -p /mnt/huge
#grep hugetlbfs /proc/mounts \
|| mount -t hugetlbfs huge /mnt/huge

Make sure some hugepages are allocated
echo 4096 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

##
Setup the bridge and attach the physical port

ovs-vsctl add-br br0 \
 -- set Bridge br0 protocols=OpenFlow13

Flush default NORMAL rule
ovs-ofctl -O OpenFlow13 del-flows br0

ifconfig sdn_p0 0
ifconfig sdn_p0 down

TECHNICAL PAPER: OVS Test Plan

page 10 of 14Corigine Inc.

ifconfig sdn_p0 mtu 2000

if [“$VXLAN” != “”]; then
 ifconfig sdn_p0 hw ether 02:11:11:00:00:02

ifconfig sdn_p0
 ifconfig sdn_p0 up
 # Add Static ARP entry

arp -i sdn_p0 -s
 ovs-vsctl \
 -- --may-exist add-port br0 vxlt \
 -- set Interface vxlt ofport_request=1 \
 -- set interface vxlt type=vxlan \

options:local_ip=
options:remote_ip=

 options:key=1
else
 ifconfig sdn_p0 up
 # Add Physical Port (=1)
 ovs-vsctl add-port br0 sdn_p0 \
 -- set Interface sdn_p0 ofport_request=1
fi

##
Attach virtual-function ports to bridge

whitelist=””
ofpgrp=””
for idx in $(seq 0 3) ; do
 iface=”sdn_v0.$idx”
 # OpenFlow Port Index
 ofpidx=$((10 + $idx))
 # (Domain)/Bus/Device/Function
 bdf=$(ethtool -i $iface | sed -rn ‘s/^bus-info:.*\s(.*)$/\1/p’)
 $RTE_SDK/tools/dpdk_nic_bind.py -b nfp_uio $bdf
 ovs-vsctl add-port br0 $iface \
 -- set Interface $iface ofport_request=$ofpidx
 # Egress Rule (for generated traffic)
 ovs-ofctl -O OpenFlow13 add-flow br0 \
 “in_port=$ofpidx,action=output:1”
 # Ingress Load-balancing list (for terminating traffic)
 ofpgrp=”$ofpgrp,bucket=actions=output:$ofpidx”
done

Configure group
ovs-ofctl -O OpenFlow13 add-group $brname \
 “group_id=1,type=select$ofpgrp”

Load-balance all traffic received on the physical port (‘1’)
ovs-ofctl -O OpenFlow13 add-flow $brname \
 “in_port=1,actions=group:1”

Generate/Terminate Traffic Script
Script name: gen-traffic.sh

The following script is used for generating or terminating traffic on the Traffic Generator Serv-

er. If operating as a generator, then the packet size must be specified on the command line. To

operate as a sink (terminating traffic) then the keyword SINK needs to be specified.

#!/bin/bash

This script start the Netronome traffic test tool either as a

TECHNICAL PAPER: OVS Test Plan

page 11 of 14Corigine Inc.

traffic sink (with the SINK command line argument) or as a
traffic source (with the packet size on the command line).

if [“$1” == “”]; then
 echo “ERROR: Please specify packet size (or the keyword SINK)”
 exit -1
fi
if [“$1” == “SINK”]; then
 mode=”SINK”
else
 mode=”SOURCE”
 pktsize=”$1”
fi

##
Compose the port list (DPDK EAL white list)

whitelist=””
for idx in $(seq 0 3) ; do
 iface=”sdn_v0.$idx”
 # (Domain)/Bus/Device/Function
 bdf=$(ethtool -i $iface | sed -rn ‘s/^bus-info:.*\s(.*)$/\1/p’)
 # White list (port list) for DPDK application
 whitelist=”$whitelist -w $bdf”
done

##
Setup Command Line

cmd=”/usr/local/bin/trafgen”

cmd=”$cmd -n 1”
cmd=”$cmd -c 0xffff”
cmd=”$cmd -d /opt/netronome/lib/librte_pmd_nfp_net.so”
Add port list (in the form of an EAL white list)
cmd=”$cmd $whitelist”
cmd=”$cmd --”
Set the port mask to all eight ports
cmd=”$cmd -p 0xf”

case “$mode” in
 “SOURCE”)
 # ‘Benchmark’ mode (traffic generator)
 cmd=”$cmd --benchmark”
 # Duration in seconds (1..3599)
 # cmd=”$cmd -Q 3599”
 # Ethernet and IP parameters
 cmd=”$cmd --src-mac 00:11:22:33:44:00”
 cmd=”$cmd --dst-mac 00:44:33:22:11:00”
 cmd=”$cmd --src-ip 1.0.0.0”
 cmd=”$cmd --dst-ip 2.0.0.0”
 # Packet Size
 cmd=”$cmd --packet-size $pktsize”
 # Packet Rate (per thread)
 cmd=”$cmd -r 0”
 # Transmit Burst Size {1..128} (DPDK: tx_burst_size, default: 32)
 cmd=”$cmd -t 16”
 # Flows within ‘Stream’ (flows_per_stream, default: 65536)
 cmd=”$cmd --flows-per-stream 2000”
 # Number of Streams (number_of_streams, default: 1)
 cmd=”$cmd --streams 32”

TECHNICAL PAPER: OVS Test Plan

page 12 of 14Corigine Inc.

 # Number of Repeats of Stream
 cmd=”$cmd --bursts-per-stream 10”
 ;;
 “SINK”)
 ;;
esac

Capture the full command in a file
echo $cmd > /tmp/cmdline-$mode

Terminate shell and execute command
exec $cmd

Device-under-Test Configurations
Setting up Net-to-VM and VM-to-Net
Script name: setup-net-to-vm.sh

This script creates a bridge (br0) and attaches the physical port sdn_p0. The physical port

is assigned the port-id 1. It further attaches the four virtual ports sdn_v0.0 - sdn_v0.3 to the

bridge and assigns them the port ids 10..13. These four ports are assumed to be connected to

the four VMs and the physical port is assumed to be connected to a traffic generator.

#!/bin/bash

This script configures both the Net-to-VM and VM-to-Net use case.
It optionally also configures a VXLAN tunnel endpoint.

if [“$1” == “VXLAN”]; then
 VXLAN=”yes”
fi

Remove the existing br0 (if it exists)
ovs-vsctl --if-exists del-br br0

Recreate the bridge
ovs-vsctl add-br br0

Remove the default NORMAL rule
ovs-ofctl del-flows br0

if [“$VXLAN” != “”]; then
 l_ipaddr=”10.1.1.1”
 r_ipaddr=”10.1.1.2”
 vxifname=”vxlt”
 ifconfig sdn_p0 down
 # Set MAC address of physical port
 ifconfig sdn_p0 hw ether 02:11:11:00:00:01
 ifconfig sdn_p0 mtu 2000
 ifconfig sdn_p0 up $l_ipaddr/24
 # Add Static ARP entry to peer
 arp -i sdn_p0 -s $r_ipaddr 02:11:11:00:00:02
 ovs-vsctl \
 -- --may-exist add-port br0 $vxifname \
 -- set Interface $vxifname ofport_request=1 \
 -- set interface $vxifname type=vxlan \
 options:local_ip=$l_ipaddr \
 options:remote_ip=$r_ipaddr \
 options:key=1
else

TECHNICAL PAPER: OVS Test Plan

page 13 of 14Corigine Inc.

ifconfig sdn_p0 0
Add Physical port (=1)
ovs-vsctl add-port br0 sdn_p0 \

 -- set Interface sdn_p0 ofport_request=1
fi

Add VM ports and set the port numbers to 10..13
ovs-vsctl add-port br0 sdn_v0.0 -- set Interface sdn_v0.0 ofport_re-
quest=10
ovs-vsctl add-port br0 sdn_v0.1 -- set Interface sdn_v0.1 ofport_re-
quest=11
ovs-vsctl add-port br0 sdn_v0.2 -- set Interface sdn_v0.2 ofport_re-
quest=12
ovs-vsctl add-port br0 sdn_v0.3 -- set Interface sdn_v0.3 ofport_re-
quest=13

Setting up VM-to-VM
Script name: setup-vm-to-vm.sh

This script will attach eight VMs (via sdn_v0.0 to sdn_v0.7) to the common bridge br0.

#!/bin/bash

Bridge name
brname=”br0”

Remove the existing bridge (if it exists)
ovs-vsctl --if-exists del-br $brname

Add the bridge back (allow for OpenFlow 1.3 features)
ovs-vsctl add-br $brname \

-- set Bridge $brname protocols=OpenFlow13

Remove the default NORMAL rule
ovs-ofctl -O OpenFlow13 del-flows $brname

Attach sdn_v0.0 - sdn_v0.3 to the bridge
for idx in $(seq 0 3); do
 iface=”sdn_v0.$idx”
 ofpidx=$((10 + $idx))

ovs-vsctl add-port $brname $iface \
 -- set Interface $iface ofport_request=$ofpidx
done

Collecting Results
The Corigine trafgen tool has been used for collecting results in the form of packet rates.

The method is slightly different for each use case.

Network to VM
The traffic is received on four different VMs, so one needs to take a snapshot of the received

rates on each VM. The reading from trafgen on one VM looks something like this:

+==+
| Timer period: 1 |
+------ Statistics for port 0 -----------------------+
| Packets sent: 0 |
| Packets received: 49685140 |
| Packet receive rate: 7079952 |
| Packet send rate: 0 |

TP-OVS-TEST-PLAN-12/2020

TECHNICAL PAPER: OVS Test Plan

page 14 of 14

| Bytes received: 3179848960 |
| Byte receive rate: 453116928 |
| Packets dropped on send: 0 |
| Packets dropped on receive: 49685140 |
+==+

This was captured during a 64-byte test. Assuming that all four VMs are reporting approx-

imately the same rates, one can deduct that the total packet rate is 4x7079952 pps, which

equals 28.319 Mpps. Similarly, the total bit rate is 8x4x453116928 bps which equals 14.500

Gbps.

VM to Network
For this use case, the traffic is received by the external device, so there is no need to aggre-

gate measurements. A read-out from trafgen may look like:

+================= Aggregate statistics ===============+
| Total packets sent: 0 |
| Total packets received: 983333538 |
| Total packet send rate: 0 |
| Total packet receive rate: 27689512 |
| Total bytes sent: 0 |
| Total bytes received: 62933358058 |
| Total byte send rate: 0 |
| Total byte receive rate: 1772128768 |
| Total packets dropped on send: 0 |
| Total packets dropped on receive: 19261435670 |
+==+

This was also captured during a 64-byte test. One can directly read-out the packet rate to be

27.690 Mpps. For the bit rate, the displayed value needs to be adjusted from byte rate to bit

rate: 8x1772128768 bps, which equals 14.177 Gbps.

VM to VM
In this use case, traffic is generated on all four VMs and similarly received by all four VMs. The

flow rules implement a full mesh (traffic generated by any specific VM is distributed to the

three other VMs).

The measurement of interest is how much traffic is received by the VMs in total. In other

words, just like the Network-to-VM measurement, one needs to aggregate the four measure-

ments from the four VMs.

Email: sales@corigine.com
www.corigine.com.cn

©2020 Corigine. All rights reserved.

Corigine, the Corigine logo are trademarks
or registered trademarks of Corigine. All
other trademarks mentioned are registered trademarks or
trademarks of their respective owners in the United States and
other countries.

