
WHITE PAPER

page 1 of 6Corigine Inc.

INTRODUCTION

Service nodes typically switch network traffic from one port to another, perhaps modifying 

headers or inspecting traffic along the way. In a traditional environment, this switching is done 

in software in the host operating system or hypervisor. This software or ‘virtual’ switching can 

consume more than 50% of the CPU, leaving few cycles to run actual applications. Finding a 

more efficient way to execute this virtual switching is critical to making service nodes perform 

at today’s network speeds. This paper explores a method of offloading virtual switching from 

host CPUs to create an efficient platform for network service nodes.

VIRTUALIZATION REVOLUTION

Virtualization is an important concept in the computing industry. We started by virtualiz-

ing servers, which abstracts the hardware from the software that sits above it. This allowed 

multiple users and applications to share physical hardware, which drastically increased the 

efficiency of servers. Network service functions like firewalls, intrusion detection/prevention, 

lawful intercept, or network analytics that were previously made from dedicated hardware for 

individual organizations can now be virtualized to support multiple users, or tenants, simul-

taneously. In a multitenant environment, multiple groups of users can share a single firewall 

by keeping each tenant logically separate. Although a single physical switch may connect 

the service node to the network, virtual switching takes place within the firewall to keep the 

tenants’ traffic logically separate from each other.    

Hardware Acceleration for 
Network Services

.

.

.

.

.

.

.

FINDING A MORE 

EFFICIENT WAY TO 

EXECUTE VIRTUAL 

SWITCHING IS CRITICAL 

TO MAKING SERVICE 

NODES PERFORM AT 

TODAY’S NETWORK 

SPEEDS. 

CONTENTS

INTRODUCTION  .....................................................................................................................................................1

VIRTUALIZATION REVOLUTION  ....................................................................................................................1

OPEN VSWITCH IN NETWORK SERVICE NODES  .................................................................................2

OVS INTERNALS...................................................................................................................................................3

Corigine OVS OFFLOAD  .................................................................................................................................  4

AGILIO SMARTNIC  ...............................................................................................................................................5

PERFORMANCE METRICS................................................................................................................................5



WHITE PAPER: Hardware Acceleration for Network Services

page 2 of 6Corigine Inc.

Figure 1. 

Firewall Firewall

Firewall Physical Switch

Virtual Switch

Tenant 1 Tenant 2 Tenant 3Tenant 1 Tenant 2

Tenant 3

Virtualization of Applications for Multi-Tenancy

This virtual switch runs in software on each physical service node. It inspects incoming net-

work traffic and determines which of the tenants should receive it. But the tasks of the virtual 

switch are not as simple as that. To mirror the functionality of a physical switch, several opera-

tions including encapsulation/decapsulation of headers, address translation, priority queuing, 

shaping and policing are required. These functions consume significant compute resources; 

in some cases over half of the available CPU cycles, leaving few remaining to run the virtual 

applications. Virtual switching is at the heart of a virtualized system, so it stands to reason that 

efficient systems must perform efficient virtual switching. 

OPEN VSWITCH IN NETWORK SERVICE NODES

The most commonly deployed virtual switching software is Open vSwitch (OVS). OVS is 

a production quality, multilayer virtual switch licensed under the open source Apache 2.0 

license and is available at openvswitch.org. It is the default switch in XenServer 6.0, the Xen 

Cloud Platform and also supports Xen, KVM, Proxmox VE and VirtualBox. It has also been 

integrated into many virtual management systems including OpenStack, openQRM, Open-

Nebula and oVirt. The kernel datapath is distributed with Linux, and packages are available for 

Ubuntu, Debian, and Fedora. OVS is also supported on FreeBSD and NetBSD. 

Much effort has been invested to improve the performance of OVS, including porting portions 

to run in user space rather than kernel space. While these enhancements indeed offer some 

performance improvements, they still require CPU resources to execute the virtual switching 

functions. 

The following graph shows measured results of throughput using Open vSwitch in a standard 

Linux distribution with GRE encapsulation. Especially at smaller packet sizes, the throughput 

falls far short of the theoretical maximum for 10 Gigabit Ethernet.  The picture only gets worse 

at higher data rates.  

VIRTUAL SWITCHING 

IS AT THE HEART OF A 

VIRTUALIZED SYSTEM, 

SO IT STANDS TO 

REASON THAT EFFICIENT 

SYSTEMS MUST PERFORM 

EFFICIENT VIRTUAL 

SWITCHING



WHITE PAPER: Hardware Acceleration for Network Services

page 3 of 6Corigine Inc.

 

12

10

8

6

4

2

0
64

Th
ro

ug
hp

ut
 (G

b/
s)

Packet Size (Bytes)

400B Packet Average

128 256 512 1024 1500

10GbE Target

OVS 1.9

Figure 2. Standard Open vSwitch Throughput with GRE

OVS INTERNALS

In laymans terms, OVS in Linux consists of two major parts: a fastpath and a slow path. The 

slow path is taken whenever a new flow is encountered and decisions must be made about 

how to manage the traffic for that flow. Because this path need only be taken on the first 

packet of each new flow, the overhead associated with the ‘slow path’ is generally considered 

acceptable. After a flow is established, and entry is made in a Flow Table (FT) with a corre-

sponding action for packets associated with that entry. All subsequent packets on that es-

tablished flow can take the fastpath, which finds the flow entry in the flow table and executes 

the associated action. Examples of actions could be to forward the packet from a certain port, 

change an IP or Ethernet address, or drop the packet from further processing.

OpenFlow

OVSDB

SDN
Controller

CPU User Mode

CPU Kernel

OpenFlow
Agent

OVSDB
Agent

Match 
Tables

Actions Tunnels

OVS

Customer
App/VNF

VM

Figure 3. Open vSwitch Architecture

The ‘fastpath’ is so named relative to the ‘slow path’ and requires fewer time consuming cycles 

to traverse. However, even the fastpath of common OVS implementations may not be so fast 



WHITE PAPER: Hardware Acceleration for Network Services

page 4 of 6Corigine Inc.

OpenFlow

OVSDB

SDN
Controller

CPU User Mode

CPU Kernel

SmartNIC

OpenFlow
Agent

OVSDB
Agent

Custom
Matching /

Action

VNC1 VNC2

Match 
Tables

Match 
Tables

Actions

Actions Tunnels
MicroFlow

State
Policies / Stats

Load Balance
or Divert to
CPU App

Tunnels

OVS

Customer
App/VNF

VNC3 /
DPDK

VM

Figure 4.  Corigine OVS Offload Solution

in the context of overall system performance. In fact, adding tunneling overhead and multiple 

rules can expose OVS bottlenecks on network service nodes.

Many performance enhancements have been proposed to accelerate the fastpath, including 

moving the match/action logic into user space. These offer some advantages, but it’s import-

ant to remember that any logic executed by the x86 burns CPU cycles, and those cycles are 

then not available to run network functions like firewalls, DPI, or virtual Evolved Packet Core 

(vEPC). CPU cores are not free or infinitely available to process virtual switching of network 

traffic in network service nodes.

CORIGINE OVS OFFLOAD

Corigine takes a different approach to accelerating OVS for network service nodes. Rather 

than use host CPU cycles to process virtual switching, Corigine offloads the entire fastpath  to 

a SmartNIC. The first packet of each new flow takes the slow path, just as in all implemen-

tations of OVS. Subsequent packets which can be handled by the offload implementation will

be processed entirely on the SmartNIC, while other packets are passed to the host CPU where

they are processed as if they arrived via a traditional NIC. Flow Tables are kept in synchroniza-

tion between the Agilio® SmartNIC and the host. This offload implementation mirrors the OVS

kernel fastpath and is implemented in another kernel module using generic hooks in the OVS 

software. This offload is completely transparent to the OVS user-space daemons and tools: no

modifications are necessary and the offload is simply enabled by loading the offload kernel 

module. Flow table entries can be populated via an OpenFlow controller which specifies 

which actions to take for any given flow. The OVS implementation can be configured via the 

Open vSwitch Database Management Protocol, or OVSDB.



WHITE PAPER: Hardware Acceleration for Network Services

page 5 of 6Corigine Inc.

AGILIO SMARTNIC

The PCIe card used for Corigine OVS offload is the Agilio SmartNIC, and it features a Corigine

Flow Processor. This flow processor employs over 200 individual processing engines to 

classify, prioritize, repackage, meter and route network traffic. The Agilio SmartNIC can pro-

vide efficient 10Gb/s, 25Gb/s, 40Gb/s and 100Gb/s Ethernet network interfaces. Corigine 

offloads OVS processing to the SmartNIC, freeing up CPU cycles in the host. Linux drivers and

the OVS kernel offload module come standard with the Agilio SmartNIC. Although the Smart-

NIC is programmable, this standard Agilio software provided is sufficient to accommodate 

most use cases. The benefit of programmability is that new protocols can be supported with 

future software updates, and custom applications can be supported.

Figure 5.  Corigine Agilio LX SmartNIC

PERFORMANCE METRICS

Throughput is the typical metric considered when measuring networking performance.

Posted in either gigabits per second or packets per second, this is a good indication of how 

efficiently traffic is being managed by the networking hardware and software. But throughput

is only half of the relevant metric for network service nodes. The other half is measured in CPU

utilization. The more CPU cycles are consumed by network processing, the fewer are available

to execute network functions. An efficient network service node will not only deliver high 

throughput but will do so without consuming substantial CPU cycles.

The following diagram shows the performance differences, in both throughput and CPU cycle 

savings, of a Corigine Agilio LX SmartNIC and a traditional network interface card for the 

given number of flows and rules which might be found on a network service node.

As the diagram shows, the benefits of offloading OVS processing from the host CPU is two-

fold: Throughput is higher and CPU utilization is significantly lower.



WP-HW-ACCERELATION-NS-7/18

WHITE PAPER: Hardware Acceleration for Network Services

Figure 6. 

# of OpenFlow
Entries 

# of Concurrent 
Microflows

 
 

2x40G  Agilio LX 
w/ OVS O�oad 
PPS / CPU Load 

Traditional 2x40G 
NIC w/ OVS in Kernel  

PPS / CPU Load 

100 100 
51.5 Mpps  
< 1% CPU 

10.57 Mpps 
~40% CPU 

1024 1024 
51.7 Mpps  
<1% CPU 

8.78 Mpps
>50% CPU 

9728 9728 47.5 Mpps  
<1% CPU 

7.6 Mpps  
46% CPU 

65536 65536 10.85 Mpps  
1-2% CPU 

6.06 Mpps 
28% CPU 

Agilio OVS O�oad
Datapath

User Space

Kernel OVS

Traditional NIC with
OVS Kernel Datapath

Kernel

SmartNIC PCIe NIC

User Space

Kernel

Agilio OVS
O�oad

Kernel OVS

• These performance metrics were taken with the full OVS match/action set

• With action sets optimized to use cases, performance on the order of 70Mpps 
   can be achieved

HIGHER PERFORMANCE AT REDUCED CPU CYCLES

L3 Forwarding Benchmark through OVS

 

Corigine OVS Offload Performance Comparison

SUMMARY

The cost benefits of using standard COTS equipment for network service nodes are attrac-

tive, as is the speed and agility of new service deployment. Virtual switching is at the heart of 

every network service node, and efficient switching of network traffic is essential for making 

efficient networking platforms.

Corigine’s Network Flow Processing technology offloads virtual switching from the host  CPU 

to a PCIe Agilio SmartNIC, providing efficient switching of network traffic and returning 

valuable CPU cycles to the host to run network functions like virtual firewalls, virtual load 

balancers, vEPC, virtual Customer Premise Equipment (vCPE), and virtual Broadband Network

Gateways (vBNG).

Corigine’s range of SmartNICs support 10G, 25G, 40G and 100Gb/s Ethernet and multiple 

PCIe interfaces for maximum efficiency in network service nodes.

page 6 of 6

 
 

 

Email: sales@corigine.com
www.corigine.com.cn

©2020 Corigine. All rights reserved.

Corigine, the Corigine  logo are trademarks
or registered trademarks of Corigine. All
other trademarks mentioned are registered trademarks or 
trademarks of their respective owners in the United States and
other countries.


