

eBPF Offload Getting Started Guide

Corigine CX SmartNIC

Revision 1.2 − August 2018
 Kernel 4.18

eBPF Offload Getting Started Guide 1

Introduction 4

Kernel version support* 5

Environment Setup 6
Kernel 6

Fedora 28 6
Ubuntu 18.04 7
Other Distributions 7

Firmware 8
Driver 9
Setting up rings and affinities 10
iproute2 utilities 11

Fedora 28 11
Ubuntu 18.04 and other distributions 11

Clang Compiler 12
Stat Watch 13

Offloading a basic eBPF program 14

Advanced programming 16
Maps 16

Atomic writes 16
Available helpers 17
RX RSS Queue 18

User space control of offloaded eBPF 19
Access to eBPF objects 19
Libbpf 19
bpftool 19

Fedora 28 Installation 19
Ubuntu 18.04 Installation 19
Other Distributions Installation 19
Using bpftool 19

Debugging eBPF 22
LLVM 22

llvm-objdump 22

Page 2 of 34 Copyright 2018 ©

llvm-mc 23
log_level flag for program load 24

Troubleshooting 26

Appendix 28
Kernel Installation from source 28
bpftool installation from kernel sources 29
Clang Installation on Ubuntu 16.04 29
Offloading a XDP program using libbpf calls 31

Further Reading 32
NFP Architecture 32
eBPF Sample Apps 32
eBPF Offload 32
eBPF and XDP 32

Page 3 of 34 Copyright 2018 ©

​ ​

​ ​

Page 4 of 34 Copyright 2018 ©

Introduction

Corigine supports eBPF offload for XDP and cls_bpf on the Network Flow Processor (NFP). There
are three components involved:

1. Agilio CX SmartNIC
2. Linux Kernel
3. Compatible NFP Firmware

Agilio CX SmartNIC

The Agilio CX SmartNIC is a half-height, half-width NIC based on the NFP-4000. This is a 60-core
processor with up to 8 cooperatively multithreaded threads per core (but eBPF programs are typically
executed on 50 cores, each running 4 threads). The flow processing cores have a RISC instruction set
that is optimized for networking. This instruction set is similar to eBPF bytecode, ensuring the offload is
a viable proposition.

Kernel support

Corigine is currently upstreaming changes to the Linux kernel. eBPF hardware offload support
appeared in kernel 4.9, but feature additions continue to be made. This document focuses on the
kernels available after v4.16 which provides map offload support..

The upstreamed kernel driver allows for the translation of the kernel eBPF program into microcode
which can be transferred onto our network cards via the NFP eBPF Just-in-Time (JIT) compiler. This
allows for users to offload programs without requiring any microcode knowledge or understanding of
our architecture by using eBPF.

NFP Firmware

The network card requires an eBPF compatible firmware to enable the functionality. This firmware is
loaded from /lib/firmware/Corigine/nic_xxx….nffw. The firmware is available in package form

from our SmartNICs support site (https://help.Corigine.com/) and will be added to the Linux Kernel
firmware repository in the near future.

https://help.netronome.com/

Kernel version support*

Category Functionality Kernel
4.16

Kernel
4.17

Kernel
4.18

Near
Future

eBPF offload
program features

XDP_DROP

XDP_PASS

XDP_TX

XDP_ABORTED

Packet read access

Conditional statements

xdp_adjust_head()

bpf_get_prandom_u32()

perf_event_output()

RSS rx_queue_index selection

bpf_adjust_tail()

Partial offload

eBPF offload
 map features

Offload ownership for maps

Hash maps

Array maps

bpf_map_lookup_elem()

bpf_map_update_elem()

bpf_map_delete_elem()

Atomic write (sync_fetch_and_add)

Map sharing between ports

eBPF offload
performance optimizations

Localized packet cache

32 bit BPF support

Localized maps

* Timelines are subject to change

Page 5 of 34 Copyright 2018 ©

Environment Setup

We recommend using Ubuntu 18.04 or Fedora 28, due to these distributions having the latest packages
available. Fedora 28 in particular is recommended, as a fresh install with the latest repository updates,
will give the recommended kernel and iproute2 version.
Other distributions can be used but may require the necessary tools to be compiled from source.
Relevant instructions for this are included in the Appendix.

Kernel

Kernel 4.17 or higher is highly recommended for offloading eBPF / XDP to the NFP. The current kernel
version can be checked using the following command.

$​ uname -r
4.18.1-1.vanilla.knurd.1.fc28.x86_64

Fedora 28
To update the Fedora 28 kernel to the latest stable kernel, run the following commands.

#​ curl -s https://repos.fedorapeople.org/repos/thl/kernel-vanilla.repo | sudo tee
/etc/yum.repos.d/kernel-vanilla.repo

#​ yum install kernel-devel
#​ dnf --enablerepo=kernel-vanilla-stable update
#​ reboot

If required, the latest pre-release kernel can be obtained from the follow repository.

​dnf --enablerepo=kernel-vanilla-mainline-wo-mergew update
​ reboot

Page 6 of 34 Copyright 2018 ©

Ubuntu 18.04
Obtain the latest kernel from the official repository at ​http://kernel.ubuntu.com/~kernel-ppa/mainline​.
The following commands are for kernel 4.18.

$​ wget
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.18/linux-headers-4.18.0-041800_4.18.0-04

1800.201808122131_all.deb

$​ wget
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.18/linux-headers-4.18.0-041800-generic_4

.18.0-041800.201808122131_amd64.deb

$​ wget
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.18/linux-image-unsigned-4.18.0-041800-ge

neric_4.18.0-041800.201808122131_amd64.deb

$​ wget
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.18/linux-modules-4.18.0-041800-generic_4

.18.0-041800.201808122131_amd64.deb

Then Install the packages.

#​ dpkg -i linux-headers-4.18.0-041800_4.18.0-041800.201808122131_all.deb
#​ dpkg -i linux-headers-4.18.0-041800-generic_4.18.0-041800.201808122131_amd64.deb
#​ dpkg -i linux-modules-4.18.0-041800-generic_4.18.0-041800.201808122131_amd64.deb
#​ dpkg -i linux-image-unsigned-4.18.0-041800-generic_4.18.0-041800.201808122131_amd64.deb
#​ reboot

Other Distributions

To build the kernel from source, follow the steps provided in the Appendix.

Page 7 of 34 Copyright 2018 ©

http://kernel.ubuntu.com/~kernel-ppa/mainline/

​ ​
 ​ ​

#​ dpkg -i agilio-bpf-firmware-XXXX.deb

#​ rpm -i agilio-bpf-firmware-XXXX.rpm

$​ cd /lib/firmware/netronome
#​ ln -s agilio-bpf/* .

Page 8 of 34 Copyright 2018 ©

Firmware

Download the agilio-bpf firmware files for the relevant distribution from the “Agilio eBPF Software”
knowledge base section of our SmartNICs support website https://help.Corigine.com.

1. Install the files using the following command.

● For Debian / Ubuntu:

● For RedHat / Fedora / Centos:

2. Update the NFP driver symbolic links to point to the eBPF firmware.

https://help.netronome.com/

Driver

The NFP driver required for eBPF offload is shipped with the kernel and should have been
automatically installed on your system when installing the new kernel. When it is inserted into the
kernel, the driver searches for a compatible firmware to load to the card. Follow those steps to make
sure the newly firmware is loaded:

1. Remove and reload the driver.

#​ modprobe -r nfp
#​ modprobe nfp

2. Check ​dmesg​ logs that eBPF capability has been enabled within the driver.

​

 ​

3. Check ​ip link​ output for the interface status and ensure the interface state is UP.

$​ ip link
 18: ens4: mtu 1500 qdisc noop state ​UP​ mode DEFAULT group default qlen 1000
 link/ether 00:15:4d:12:1d:79 brd ff:ff:ff:ff:ff:ff

4. ethtool​ can also be used to check that the firmware has eBPF offload capability.

$​ ethtool -i ​$ETHNAME
 driver: nfp

 version: 4.17.1-250

 firmware-version: 0.0.3.5 0.22 bpf-2.0.6.121 ​ebpf

Page 9 of 34 Copyright 2018 ©

$ dmesg
 [...]

nfp 0000:81:00.0: nfp: Corigine/nic_AMDA0081-0001_1x40.nffw: found,nfp 0000:
81:00.0: Soft-reset, loading FW image
nfp 0000:81:00.0: Finished loading FW image
nfp 0000:81:00.0 eth0: CAP: 0x78140233 PROMISC RXCSUM TXCSUM GATHER TSO2 RSS2

AUTOMASK IRQMOD RXCSUM_COMPLETE BPF
nfp 0000:04:00.0 ens4: renamed from eth1

​

#​ ifconfig ​$ETHNAME​ 10.0.0.4 up mtu 1500
#​ numactl -m 0 -N 0 ethtool -L ​$ETHNAME​ rx 0 tx 0 combined 8
#​ numactl -m 0 -N 0 ethtool -G ​$ETHNAME​ rx 512 tx 512
#​ nfp-drv-kmods/tools/set_irq_affinity.sh ​$ETHNAME

Note: The maximum number of allowed rings for eBPF on driver mode is 31 combined per card. This
allows for 31 rings on a single port card, and 15 queues per interface for dual port cards. This limitation
does not apply to eBPF on offload.

Page 10 of 34 Copyright 2018 ©

Setting up rings and affinities

We recommend running the following commands for each interface to provide it with sufficient
resources for when eBPF runs in driver mode. In this example, we have a server with 8 cores, therefore
we are allocating 8 rings. The IRQ affinity script can be obtained from our public driver repository, at
https://github.com/Corigine/nfp-drv-kmods/blob/master/tools/set_irq_affinity.sh.

https://github.com/Netronome/nfp-drv-kmods/blob/master/tools/set_irq_affinity.sh

iproute2 utilities

Iproute2 tagged newer than v4.16 (ss180402) is required for NFP offload.
Check the installed ​ip version to ensure that the version is newer than 2018-04. If not, follow the
installation instructions below.

$​ ip -V
 ip utility, iproute2-​ss180402

Fedora 28

1. Install iproute2 from the updates-testing repository.

#​ dnf --enablerepo=updates-testing --best install iproute

Ubuntu 18.04 and other distributions
Currently there is no iproute2 binary available for Ubuntu, so compilation is required.

1. Clone the sources from the development repository.

$​ git clone https://git.kernel.org/pub/scm/network/iproute2/iproute2-next.git

2. Install required dependencies.

#​ apt-get install elfutils libelf-dev libmnl-dev bison flex pkg-config

3. Compile iproute2 tools and check for libelf and libmnl support.

$ ​./configure
[...]

ELF support: yes

libmnl support: yes

[...]

$​ make
#​ make install

Page 11 of 34 Copyright 2018 ©

Clang Compiler

Clang 4.0 is required to carry out simple eBPF compilation. However we recommend clang 6.0 is used
to provide optimized compilation.

Ubuntu 18.04 and Fedora 28 offers ​clang-6.0 in their upstream repository, so can be obtained using
the inbuilt package manager.

To check the installed ​clang​ version, run the following command.

$​ clang --version
 clang version 6.0.0

Please consult the relevant instructions available at ​https://apt.llvm.org if you need to update to
clang-6.0​ or higher on a different distribution. Further instructions are also available in the Appendix.

Page 12 of 34 Copyright 2018 ©

https://apt.llvm.org/

​ ​ ​

​ ​ ​

Page 13 of 34 Copyright 2018 ©

Stat Watch

stat_watch.py is a tool we provide within our public GitHub driver repository
(https://github.com/Corigine/nfp-drv-kmods/blob/master/tools/stat_watch.py). It displays ethtool
measurements values in table form, in an easy-to-read fashion. It can be used as follows.

$ nfp-drv-kmods/tools/stat_watch.py $ETHNAME -c

https://github.com/Netronome/nfp-drv-kmods/blob/master/tools/stat_watch.py

Offloading a basic eBPF program
If you successfully validated the steps from the previous section, your environment should be ready for
performing eBPF offload. This section provides the steps for offloading a basic example program to the
Agilio CX SmartNIC.

1. Create the following program and save it as ​drop.c​.

#include <linux/bpf.h>

int​ ​xdp_prog1​(struct xdp_md *ctx __attribute__((unused)​)) {
 ​return​ XDP_DROP;
}

2. Compile the program using ​clang​.

$​ clang -O2 -target bpf -c ​drop.c​ -o ​drop.o

3. Offload the program using ​ip link​ (change ​$ETHNAME​ to the relevant interface name).

#​ ip link set dev ​$ETHNAME​ ​xdpoffload​ obj ​drop.o​ sec .text

4. Check that the program is offloaded using ​ip link​.

$​ ip link show dev ​$ETHNAME
 18: ens4: <BROADCAST,MULTICAST> mtu 1500 ​xdpoffload​ qdisc noop state UP mode
 DEFAULT group default qlen 1000

 link/ether 00:15:4d:12:1d:79 brd ff:ff:ff:ff:ff:ff

 ​prog/xdp id 35 tag 57cd311f2e27366b jited

Page 14 of 34 Copyright 2018 ©

5. Send traffic to the interface and check ​stat_watch.py​. All packets coming to the chosen

interface should be dropped, represented in stat watch by field ​bpf_app1​.

6. Now remove the offloaded program from the interface.

#​ ip -force link set dev ​$ETHNAME​ xdpoffload off

The above steps can be repeated to perform ​XDP_PASS (bpf_pass), ​XDP_TX (bpf_app2), ​XDP_ABORTED
(bpf_app3). Note that the “app” code names are related to those used in cls_bpf for historical reasons.

Page 15 of 34 Copyright 2018 ©

Advanced programming

Maps

The NFP hardware has full ownership of offloaded maps. The host can query the map using the inbuilt
kernel map lookup calls which are subsequently relayed to the NFP hardware.

Map types such as the PER_CPU variations are impractical on the NFP due to the large number of
cores present therefore they are not supported. A list of supported map types can be seen in the ​Kernel
version support section. The NFP currently has a maximum limit of 64 bytes per record (key bytes +
value bytes).

Atomic writes
Since Kernel 4.17, map updates are supported by our driver. As of this writing, our public firmware does
not contain map update support from the datapath, but this is available on request. Map updates can
still take place from user space, for example with bpftool, see related section. Our public firmware
currently supports atomic write operations (fetch-and-add). Here is an example:

#include <linux/bpf.h>

#include "bpf_helpers.h"

struct bpf_map_def ​SEC​(​"maps"​)​ map_count = {
 .type = BPF_MAP_TYPE_ARRAY,

 .key_size = ​sizeof​(__u32),
 .value_size = ​sizeof​(__u64),
 .max_entries = ​1024​,
};

SEC(​"xdp"​)
int​ ​xdp_prog1​()
{

 __u32 key = ​0​;
 __u32 *count;

 count = bpf_map_lookup_elem(&map_count, &key);

 ​if​ (!count)
 ​return​ XDP_DROP;
 __sync_fetch_and_add(count, ​1​);
 ​return​ XDP_DROP;
}

Page 16 of 34 Copyright 2018 ©

Available helpers

The list of eBPF helper functions that can be called from within an eBPF program and are currently
implemented by the NFP is the following:

void​ *​bpf_map_lookup_elem​(struct bpf_map *map, ​void​ *key)
Perform a lookup in ​map​ ​for​ an entry associated to ​key​.
Return: Map value associated to ​key​, or ​NULL​ if no entry was found.

int​ ​bpf_map_delete_elem​(struct bpf_map *map, ​void​ *key)
Delete entry with ​key​ from ​map​.
Return: 0 on success, or a negative error in case of failure.

u32​ ​bpf_get_prandom_u32​(​void​)
Return a random 32-bit unsigned value.

int​ ​bpf_xdp_adjust_head​(struct xdp_buff *xdp_md, ​int​ delta)
Adjust (move) ​xdp_md->data​ by ​delta​ bytes. Note that it is possible to use
a negative value for ​delta​. This helper can be used to prepare the packet
for pushing or popping headers.

A call to this helper is susceptible to change data from the packet.

Therefore, at load time, all checks on pointers previously done by the

verifier are invalidated and must be performed again.

Return: 0 on success, or a negative error in case of failure.

int​ ​bpf_perf_event_output​(struct pt_reg *ctx, struct bpf_map *map, u64 flags,
 ​void​ *data, u64 size)

Write raw ​data​ blob into a special BPF perf event held by ​map​ of type
BPF_MAP_TYPE_PERF_EVENT_ARRAY​. This perf event must have the following
attributes: ​PERF_SAMPLE_RAW​ as ​sample_type​, ​PERF_TYPE_SOFTWARE​ as ​type​, and
PERF_COUNT_SW_BPF_OUTPUT​ as ​config​.
The value to write of ​size​, is passed to eBPF stack and pointed by ​data​.
For eBPF hardware offload, ​flags​ encompass two things:

- The 32 higher bits are used to indicate the number of bytes from

context (i.e. from the packet) that will be dumped.

- The 32 lower bits must be set to ​BPF_F_CURRENT_CPU.

For example, if ​flags​ are set to (0x10 << 32 | ​BPF_F_CURRENT_CPU​), then in
addition to ​size​ bytes of ​data​, the first 16 (0x10) bytes of the packet
will be dumped.

Page 17 of 34 Copyright 2018 ©

The context of the program ​ctx​ needs also be passed to the helper.
On user space, a program willing to read the values needs to call

perf_event_open​()​ on the perf event and to store the file descriptor into
the ​map​. This must be done before the eBPF program can send data into it.
An example is available in file ​samples/bpf/trace_output_user.c​ in the
Linux kernel source tree (the eBPF program counterpart is in

samples/bpf/trace_output_kern.c​).
Data can be: only custom structs, only the packet payload, or a combination

of both.

Return: 0 on success, or a negative error in case of failure.

RX RSS Queue

The NFP allows for the offloaded eBPF program to choose the RSS queue for transferring the packets
up to the host. For example, in the program below, all receiving packets will be placed onto queue 1.
This can obviously be extended using hashing algorithms to provide optimized queue distributions for
incoming network traffic.

#include <linux/bpf.h>

int​ ​xdp_prog1​(struct xdp_md *xdp)​ {
xdp->rx_queue_index = ​1​;

return​ XDP_PASS;
}

Page 18 of 34 Copyright 2018 ©

​ ​

 ​ ​

​
​

​

​
​ ​ ​

 ​ ​

Page 19 of 34 Copyright 2018 ©

User space control of offloaded eBPF

Access to eBPF objects

User space programs can interact with the offloaded program in the same way as normal eBPF
programs. The kernel will try and offload the program if a non-null ifindex is supplied to the bpf()
system call for loading the program.

Maps can be accessed from the kernel using user space eBPF map lookup/update commands
(technically: the bpf() system call).

Libbpf

In kernel 4.18 and newer, libbpf will offload the file if an ifindex is passed to
bpf_prog_load_xattr() and if the hardware flag is set. See the Appendix for an example.

bpftool

bpftool is a user space utility used for introspection and management of eBPF objects (maps and
programs).

Fedora 28 Installation

yum install bpftool

Ubuntu 18.04 Installation
A compiled binary for Ubuntu has been made available as a Debian (.deb) package in the “Agilio eBPF
Software” knowledge base section of our SmartNICs support website (https://help.Corigine.com)
which contains NFP binutils support.

Other Distributions Installation

Follow the steps in the Appendix if a binary is not available for your distribution.

Using bpftool
The documentation is installed as manual pages that you can access with the man utility:

https://help.netronome.com/

$​ man bpftool
$​ man bpftool-prog
$​ man bpftool-map

bpftool can be used to gather information about eBPF programs and maps. For example you can list
loaded programs:

#​ bpftool prog show
27: xdp tag b722a8b5b9e9be25 dev ens4np0

loaded_at Jun 12/13:20 uid 0

xlated 112B jited 392B memlock 4096B map_ids 31

And you could dump the instructions for this program:

#​ bpftool prog dump xlated id 27
 0: (b7) r1 = 0

 1: (63) *(u32 *)(r10 -4) = r1

 2: (bf) r2 = r10

 3: (07) r2 += -4

 4: (18) r1 = map[id:31]

 6: (85) call 0x0#1725914768

 7: (b7) r1 = 1

 8: (15) if r0 == 0x0 goto pc+3

 9: (b7) r1 = 1

 10: (c3) lock *(u32 *)(r0 +0) += r1

 11: (b7) r1 = 2

 12: (bf) r0 = r1

 13: (95) exit

The JIT NFP code can be dumped when bpftool is built against the latest version of binutils-dev (v2.31).
The Debian (.deb) package we provide on our website does have support for dumping these JIT-ed
NFP instructions.

#​ bpftool prog dump jited id 27
 0: .0 immed[gprB_6, 0x3fff]

 8: .1 alu[gprB_6, gprB_6, AND, *l$index1]

 10: .2 immed[gprA_2, 0x0], gpr_wrboth

 18: .3 immed[gprA_3, 0x0], gpr_wrboth

Page 20 of 34 Copyright 2018 ©

Maps can be listed and dumped too:

#​ bpftool map
1234: array name ch_rings flags 0x0

 key 4B value 4B max_entries 7860 memlock 65536B

#​ bpftool map dump id 1234
key: 00 00 00 00 value: 00 00 00 00

key: 01 00 00 00 value: 00 00 00 00

key: 02 00 00 00 value: 00 00 00 00

key: 03 00 00 00 value: 00 00 00 00

[...]

Found 7860 elements

It is also possible to execute some management operations, including (but not limited to) loading
programs, performing lookups or updates of map values. Here is an example for the latter:

#​ bpftool map update id 1234 key 0x01 0x00 0x00 0x00

The output for perf event maps can also be displayed using bpftool:

#​ bpftool map event_pipe id 29

== @26945.050728686 CPU: 10 index: 10 =====

00 15 4d 12 1d 79 02 00 00 00 00 00 08 00 45 00

00 2e 00 00 00 00 40 06 66 c4 0a 00 00 03 0a 00

00 00 00 00

Page 21 of 34 Copyright 2018 ©

Debugging eBPF
This section is not strictly about eBPF offload, but provides some hints about how to debug eBPF
programs, or for troubleshooting when the program is being run on the SmartNIC.

bpftool, of course, can be used for introspection and debug (for example to dump the code of the
program, or the contents of a given map): see the related section above. Here comes a brief
descriptions of additional tools that can turn useful as well.

LLVM

llvm-objdump

LLVM, and the front-end ​clang​, are of course extremely useful to compile programs from C to eBPF
bytecode. However, LLVM has also a number of other tools that can help with debugging. For instance,
llvm-objdump (version 4.0 or higher) can be used to dump the compiled bytecode in a
human-readable fashion, before the user tries to inject it into the kernel.

$​ llvm-objdump-4.0 -S sample_ret0.o

sample_ret0.o: file format ELF64-BPF

Disassembly of section .text:

func:

; {

 0: b7 00 00 00 00 00 00 00 r0 = 0

; return 0;

 1: 95 00 00 00 00 00 00 00 exit

Flag ​-g must be passed to ​clang when compiling the program to get information about the C source
code.

Page 22 of 34 Copyright 2018 ©

llvm-mc

With ​llvm-mc​, LLVM version 6.0 and higher also provides an eBPF assembler. One can compile step
by step: first from C to an eBPF-assembly representation and then to bytecode. This is particularly
useful to test specific sequences of instructions, since it is not necessary to manually write the full
program as hexadecimal instructions. Here is an example: let’s compile a program that just returns 0
from C to eBPF assembly with ​clang​.

$​ clang -target bpf -S -o sample_ret0.S sample_ret0.c
$​ cat sample_ret0.S
 .text

 .globl func # -- Begin function func

 .p2align 3

func: # @func

%bb.0:

 r0 = 0

 exit

 # -- End function

The language used in this eBPF assembly is the same as the verifier output (note: there is no official
human-readable eBPF assembly syntax, the form used by other tools may differ).
Let’s edit the code:

$​ sed -i ​'s/r0 = 0/r0 = -1/'​ sample_ret0.S

Now we can compile it with ​llvm-mc​ to produce the ELF object file:

$​ llvm-mc -triple bpf -filetype=obj -o sample_ret.o sample_ret0.S
$​ llvm-objdump-6.0 -d sample_ret0.o

sample_ret0.o: file format ELF64-BPF

Disassembly of section .text:

func:

 0: b7 00 00 00 ff ff ff ff r0 = -1

 1: 95 00 00 00 00 00 00 00 exit

Page 23 of 34 Copyright 2018 ©

log_level ​ flag for program load

When loading programs, the ​bpf() system call accepts a ​log_level attribute field which is used to set
the level for debug. It can have the following values:

● 0: No debug output.
● 1: Debug information from the verifier (all instructions).
● 2: More information: add all register states after each instruction.

For example, here is the output for a program loaded with ​log_level​ set to 2.

0: R1=ctx R10=fp

0: (b7) r3 = 2

1: R1=ctx R3=imm2,min_value=2,max_value=2,min_align=2 R10=fp

1: (b7) r3 = 4

2: R1=ctx R3=imm4,min_value=4,max_value=4,min_align=4 R10=fp

2: (b7) r3 = 8

3: R1=ctx R3=imm8,min_value=8,max_value=8,min_align=8 R10=fp

3: (b7) r3 = 16

4: R1=ctx R3=imm16,min_value=16,max_value=16,min_align=16 R10=fp

4: (b7) r3 = 32

5: R1=ctx R3=imm32,min_value=32,max_value=32,min_align=32 R10=fp

5: (b7) r0 = 0

6: R0=imm0,min_value=0,max_value=0,min_align=2147483648 R1=ctx \

R3=imm32,min_value=32,max_value=32,min_align=32 R10=fp

6: (95) exit

Page 24 of 34 Copyright 2018 ©

Not all tools propose an option to change this value. Currently, for passing it with ​tc or ​ip​, patching
iproute2 code is required. The following patch could be used to do so.

diff --git a/lib/bpf.c b/lib/bpf.c

index 2db151e4dd3c..1fd7daaba1e1 100644

--- a/lib/bpf.c

+++ b/lib/bpf.c

@@ -1082,7 +1082,7 @@ static int bpf_prog_load_dev(enum bpf_prog_type type,

if (size_log > 0) {

 attr.log_buf = bpf_ptr_to_u64(log);

 attr.log_size = size_log;

- attr.log_level = 1;

+ attr.log_level = 2;

}

return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));

Page 25 of 34 Copyright 2018 ©

Troubleshooting

Console error
(on offload attempt)

Description

Note: 8 bytes struct bpf_elf_map
fixup performed due to size
mismatch!

This is just a notification generated by iproute2 for all
eBPF programs. It can be ignored.

Map object ‘name' rejected:
Operation not supported (95)!

Check that a eBPF offload compatible driver and
firmware have been installed.

(see section ​Firmware​ and ​Driver​)

Map object ‘name’ rejected:
Invalid argument (22)!

The kernel, iproute or firmware installed does not
support the map type.
(see section ​Kernel version support​)

Offload device mismatch
between prog and map

Check that iproute2 version is newer than v4.16.

(see section ​iproute2 utilities​)

RTNETLINK answers: Device or
resource busy

There may already be a XDP program loaded on that
particular mode.

Unload the existing program, or if using ​ip link​, use
-force​ option to forcefully load the new program.

processed 3032 insns (limit 131072),
stack depth 0

Error fetching program/map!

Check ​dmesg​ command for further information.

Program may be too large for NFP.

Map object 'arr4' rejected:
Cannot allocate memory (12)!
 - Type: 2
 - Max elems: 4194305
 - Flags: 0

Check ​dmesg​ command for further information.

The NFP does not have enough memory for the eBPF
map, there may be too many elements within this map
or an existing map may have already consumed the
available memory.

Note: When a eBPF program is removed, the Linux
kernel does not immediately remove the map, it is
instead removed several seconds later during
garbage collection. A brief wait may be required
between replacing programs with larger maps.

Page 26 of 34 Copyright 2018 ©

[nfp] unsupported function id: X

NFP does not support the eBPF helper function.

Check ​Kernel version support​ to ensure your kernel
can support the helper.

Also check our support website for the latest firmware.

Error: nfp: Insufficient number of
TX rings w/ XDP enabled.

(Driver mode only)

There are no enough available queues for XDP.
Queues may be freed by reducing the number
pre-allocated to the netdev using ethtool -L.

(see section ​Setting up rings and affinities​)

Page 27 of 34 Copyright 2018 ©

Appendix

Kernel Installation from source

1. Download required libraries.

#​ apt-get install make gcc libelf-dev bc build-essential binutils-dev ncurses-dev
libssl-dev util-linux pkg-config elfutils libreadline-dev

2. Clone the kernel repository.

$​ git clone https://github.com/torvalds/linux.git ~/kernel

3. Setup the kernel build configuration.

$​ cp /boot/config-$(uname -r) ~/kernel/.config
$​ cd ~/kernel/
$​ make olddefconfig

4. Ensure that NFP and BPF are enabled within the kernel .config file.

CONFIG_NFP=m

CONFIG_NFP_DEBUG=y

CONFIG_NET_DEVLINK=y

CONFIG_BPF=y

CONFIG_BPF_SYSCALL=y

5. Compile the kernel and modules.

$​ make -j (number of cores)

6. Install the kernel onto the system.

#​ make modules_install
#​ make install

7. Reboot the system.

Page 28 of 34 Copyright 2018 ©

8. Check the kernel version to ensure it has booted into the new kernel.

$​ uname -r

bpftool installation from kernel sources

Follow the steps below to install bpftool on your system.

1. Install the required dependencies. Note that you may have installed ​binutils-dev and
libelf-dev already before installing the kernel and iproute2, respectively. Package
python-docutils​ is only required for building the documentation (manual pages).

#​ apt install binutils-dev libelf-dev python-docutils

2. Download the kernel sources and compile the program and the documentation.

$​ cd ~/kernel/tools/bpf/bpftool
$​ make
$​ make doc

3. Install them on the system.

#​ make install doc-install

Clang Installation on Ubuntu 16.04

1. Go to ​https://apt.llvm.org/​ and add the relevant repository to your OS.
For example, for Ubuntu 16.04 (Xenial) add the following to /etc/apt/source.list:

deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-6.0 main

deb-src http://apt.llvm.org/xenial/ llvm-toolchain-xenial-6.0 main

2. Retrieve the key for the repository.

#​ wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key|sudo apt-key add -
 ​## Fingerprint should be: 6084 F3CF 814B 57C1 CF12 EFD5 15CF 4D18 AF4F 7421

Page 29 of 34 Copyright 2018 ©

https://apt.llvm.org/

3. Install ​clang-6.0​.

#​ apt-get update
#​ apt-get install clang-6.0

4. Update system clang to point to the now installed ​clang-6.0​.

#​ update-alternatives --install /usr/bin/clang clang /usr/bin/clang-6.0 100
#​ update-alternatives --install /usr/bin/clang++ clang++ /usr/bin/clang++-6.0 100
#​ update-alternatives --install /usr/bin/llc llc /usr/bin/llc-6.0 100
#​ update-alternatives --install /usr/bin/llvm-mc llvm-mc /usr/bin/llvm-mc-6.0 50

Page 30 of 34 Copyright 2018 ©

Offloading a XDP program using libbpf calls

This example shows how a eBPF program can be offloaded to the NFP using userspace libbpf calls
(introduced in kernel 4.18). For driver mode, ifindex should be set to 0, for offload it should be set to the
NFP interface index.

#include <linux/bpf.h>

#include <linux/if_link.h>

#include "bpf/libbpf.h"

int​ ​main​(​void​)
{

struct​ ​bpf_prog_load_attr​ ​prog_load_attr​ = {
.prog_type = BPF_PROG_TYPE_XDP,

};

int​ prog_fd;
static​ ​int​ ifindex;
static​ __u32 xdp_flags;
struct​ ​bpf_object​ *​obj​;

ifindex = ​3​;
prog_load_attr.file = ​"file.o"​;
prog_load_attr.ifindex = ifindex; ​/* set offload dev ifindex */
xdp_flags |= XDP_FLAGS_HW_MODE; ​/* set HW offload flag */

if​ (bpf_prog_load_xattr(&prog_load_attr, &obj, &prog_fd))
return​ ​1​;

if​ (!prog_fd) {
printf​(​"error loading file\n"​);
return​ ​1​;

}

if​ (bpf_set_link_xdp_fd(ifindex, prog_fd, xdp_flags) < ​0​) {
printf​(​"link set xdp fd failed\n"​);
return​ ​1​;

}

return​ ​0​;
}

Page 31 of 34 Copyright 2018 ©

 ​

 ​ ​

 ​

Page 32 of 34 Copyright 2018 ©

Further Reading

NFP Architecture

Open-NFP Classroom
https://open-nfp.org/the-classroom/

The Joy of Micro-C: This document contains information about the NFP architecture
https://open-nfp.org/m/documents/the-joy-of-micro-c_fcjSfra.pdf

eBPF Sample Apps

https://github.com/Corigine/bpf-samples

eBPF Offload

Netdev 2.2 talk (Nov 2017) - Comprehensive XDP Offload: Handling the Edge Cases
https://www.youtube.com/watch?v=3qEbPSqq-QI

Transparent eBPF Offload: eBPF hardware offload advice
https://www.youtube.com/watch?v=W2v7zgUGp8A

eBPF and XDP

Kernel documentation
https://www.kernel.org/doc/Documentation/networking/filter.txt

Summary of eBPF instructions syntax and opcodes
https://github.com/iovisor/bpf-docs/blob/master/eBPF.md

Cilium BPF and XDP documentation
http://docs.cilium.io/en/latest/bpf/

BPF design Q & A, from kernel documentation
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/Documentation/bpf/bpf_design_Q
A.txt

https://open-nfp.org/the-classroom/
https://open-nfp.org/m/documents/the-joy-of-micro-c_fcjSfra.pdf
https://github.com/Netronome/bpf-samples
https://www.youtube.com/watch?v=3qEbPSqq-QI
https://www.youtube.com/watch?v=W2v7zgUGp8A
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://github.com/iovisor/bpf-docs/blob/master/eBPF.md
http://docs.cilium.io/en/latest/bpf/
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/Documentation/bpf/bpf_design_QA.txt
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/Documentation/bpf/bpf_design_QA.txt

Manual pages for bpf() and TC with BPF filters
● http://man7.org/linux/man-pages/man2/bpf.2.html
● http://man7.org/linux/man-pages/man8/tc-bpf.8.html

David Miller’s emails on xdp-newbies mailing list

● https://www.spinics.net/lists/xdp-newbies/msg00179.html​ ​bpf.h and you...
● https://www.spinics.net/lists/xdp-newbies/msg00181.html​ ​Contextually speaking...
● https://www.spinics.net/lists/xdp-newbies/msg00185.html​ ​BPF Verifier Overview

Kernel versions required for each BPF feature
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md

BPF-related compilation of resources

https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

Page 33 of 34 Copyright 2018 ©

http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://www.spinics.net/lists/xdp-newbies/msg00179.html
https://www.spinics.net/lists/xdp-newbies/msg00181.html
https://www.spinics.net/lists/xdp-newbies/msg00185.html
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

​ ​

Page 34 of 34 Copyright 2018 ©

© 2018 Corigine. All rights reserved. Corigine is a registered trademark and the Corigine Logo is a
trademark of Corigine.
All other trademarks are the property of their respective owners.

http://www.netronome.com/
https://help.netronome.com/

