
Abstract

This paper will lay out a method used to offload eBPF/XDP
programs to SmartNICs which allows the general acceleration
of any eBPF programs. We will concentrate on kernel infras-
tructure which has been developed and the in-kernel JIT/trans-
lator while covering the HW target architecture to the neces-
sary degree.

Keywords
eBPF, XDP, offload, fully programmable hardware

Introduction
There have been previous attempts to promote general
networking offloads within the Linux kernel. However in
the past only offloads with a very limited scope have been
successful. This is due to a combination of reasons:

Limited Hardware Capability: Currently most common
network interface cards (NICs) trade off flexibility for per-
formance and provide simple, mostly stateless, specific of-
floads.

CPU architectures have scaled: x86 and other general pur-
pose CPUs have scaled well with networking requirements,
supporting general stateful networking well.

Vendor Specific Solutions: Most accerlerated solutions
have been vendor specific. To ensure general offload,
infrastructure should be applicable to different hardware
platforms.

It is only now becoming possible to combine stateful pro-
cessing and performance; there are a number of NPU based
SmartNICs with a pool of RISC workers. It is also becoming
necessary due to the scaling of networking workloads beyond
the capacity of CPUs. This combination of factors suggests
that it is the right time to start adding a general offload
framework to the kernel.

The are a number of reasons to first focus on eBPF as
part of this offload:

• It is a well defined language and machine, with well con-
strained parameters, registers, memory use, instruction set
and helpers.

eBPF Hardware Offload to SmartNICs: cls bpf and XDP

• Implementation already takes into account running on par-
 allel cores which is good for transparent offload to network
 specific HW.

• It is the programming method used in XDP and one of
 those used within TC, which are the most likely targets in
 the kernel for general offload at this time.

 The hardware we are currently focusing on is the
Corigine series of NFP based NICs, however it is hoped
that this will be applied to other fully programmable NPU
based NICs.

Background
This section is designed to give a brief background into the
eBPF infrastructure and the NFP’s architecture. It is not in-
tended to be exhaustive. For those who require a more in
depth reference for eBPF please either see the kernel docu-
mentation [3] or Daniel Borkmann’s excellent paper [2]. For
those who want more information on the hardware please see
documentation on open-nfp.org [6].

The eBPF Infrastructure
The eBPF machine consists of a) eleven 64bit registers (in-
cluding the stack pointer), see listing 1 for register descrip-
tions b) a 512 byte stack for handling register spilling or
general storage c) key-value maps without a strict size limit
which can be read and written to from the kernel and user
space. d) 4k of eBPF bytecode instructions, furthermore to
this verifier enforces 64k ’complexity’ limit - the amount of
instructions traversed during verification.

Listing 1: description of the eBPF register set
R0 return value from in-kernel function, and exit value for
eBPF program
R1-R5 arguments from eBPF program to in-kernel function
R6-R9 callee saved registers that in-kernel function will
preserve

R10 read-only frame pointer to access stack

 This well constrained machine is ideal for offloading to
lightweight NPU general purpose cores. Another advantage
of eBPF is its wide adoption, the simple to use and well
defined surrounding infrastructure.

The use of the LLVM compiler ensures that it is rela-
tively trivial to build eBPF programs in C, note this also
exposes an interesting surface for future optimization of
bytecode for specific targets (within eBPF spec). Combined
with this, the existing verifier, which ensures that programs
do not create loops through the use of depth first search
(DFS) and carries per instruction state for the eBPF bytecode
program, is a great candidate for reuse in hardware compat-
ibility checks and program parsing/analysis. eBPF already
presents the notion of multiple CPUs which is implicit
within the NFP and TC has already been extended to enable
transparent hardware offloads. This combination allows the
reuse of significant amounts of kernel infrastructure along
with ease of mapping to the NFP.

The NFP Architecture

Figure 1: High level architecture of NFP 6xxx chip to
indicate the scale and capability. Note ME islands in the

centre

The NFP architecture consists of a series of hardware blocks
for certain specialist functions (encryption, reordering, mem-
ory operation) combined with a group of fully programmable
microengines. These are arranged into islands containing 12
microengines each (between 72 and120 MEs per chip) as
well as SRAM cluster target memory (CTM) and cluster lo-
cal scratch memory (CLS). The NIC also contains 2-8GB of
DRAM memory and 8 MB of SRAM.

The Microengines Each ME has the ability to run 4 or 8
cooperatively multiplexed threads with a shallow pipeline,
this ensures that cycles are used effectively. Lockless trans-
actional memory architecture allows memory to be less of a
bottleneck than it would otherwise be in a many core archi-
tecture. Each ME has 256 32bit general purpose registers,
divided into A and B banks. As in the figure 2 these are di-
vided up between the threads, leaving each thread with 16 A
and 16 B registers when running in 8 context mode (32 each
in 4 context). A and B registers can only interact with reg-
isters in the other bank, not with other registers in their own

bank. There are also 256 32bit transfer registers (128 read,
128 write) and 128 32bit next neighbour registers. Each ME
also has 4KB of local SRAM memory.

Memory System There are four different types of mem-
ory, three on chip and one off chip. As shown in figure 2
each island has its own SRAM consisting of CLS and CTM,
these are 64KB and 256KB in size. CTM is used to store
the first portion (configurable, but currently 2k on receive) of
packets being processed-enabling low latency processing of
packet headers. CLS is used as a local state overflow for MEs.
Global chip memory consists of 8MB of on chip IMEM
(SRAM) and 2-8GB of off chip EMEM. IMEM mainly con-
tains packet payloads and EMEM is where large data struc-
tures tend to be stored, however, some caching may be used
in lower latency memory.

Mapping an eBPF machine onto the NFP

Figure 2: Illustration of the conceptual mapping of the eBPF
machine to a ME thread

Figure 2 shows how the eBPF machine can be mapped to
the NFP. Maps up to a certain size can be placed in DRAM,
with some potential caching features improving access speed
and multi-thread time multiplexing being used to hide any
latency.

The stack can be placed in a combination of per ME
SRAM and per island SRAM, depending on size. The
NFP instruction store can hold up to 8000 NFP assembler
instructions, however multiple MEs can be tied together to
increase the size of the potential instruction store.

Finally through a combination of general purpose A,B
registers with next neighbour combined with transfer reg-
isters the 10 64bit general purpose eBPF registers can be
mapped. If the NFP is running in 4 context mode, this is
trivial due to the large amount of registers allocated to each
thread. However in 8 context some thought is required to
optimise register use, for example data can be stored directly
in the transfer registers if the only purpose is to transfer it
later.

The Programming Model

Figure 3: The high level architecture of the eBPF offload
model as used on either TC or XDP hooks

Figure 3 is designed to show how the transparent offload of
eBPF programs fits into the networking stack. eBPF pro-
grams are attached to the XDP or TC hooks in the stan-
dard manner. TC and XDP infrastructure form offload ob-
jects which are handed over to the in-driver verifier and trans-
lator, nfp bpf jit.c (see figure 4) which is used to convert
the eBPF bytecode to the programmable hardware’s machine
code. Maps may also be offloaded as the hardware contains
2-8GB DRAM. The firmware is then able to return processed
frames along with metadata and statistics to the host.

Figure 4: Programming model showing HW-specific JIT

Note that the offload mechanism described above is trans-
parent, the user is not required to make any changes to their
applications. There is devicewide offload on/off control via
ethtool, this is similar to the mechanism used for standard of-
floads such as LSO, checksum offload and vlan acceleration.
Ethtool configuration is combined with per program flags for
fine grained control allowing forcing offload or non-offload.
For more detail on this see the Kernel Infrastructure section.

Kernel Infrastructure
In this section we will describe changes made to different sub-
systems of the kernel as part of our implementation. Although
the TC and XDP hooks are described separately the kernel
infrastructure required for this type of offload is quite similar
in both cases (and the driver/translator handles both of them).
The area in which differences between hooks have the biggest
impact on implementation is how fine grained communica-
tion is with the relevant section of the stack, XDP being fine
grained enough to easily implement a fallback path for partial
offload.

Traffic Control (TC)
The TC subsystem has already been extended for transpar-
ent hardware offloads [1, 4]. Standard set of flags has been
introduced for u32 and is used by other classifiers such
as flower (e.g. TCA CLS FLAGS SKIP HW). The team
responsible for flower offload added an ability for drivers
to populate statistics associated with TC actions via the
tcf action stats update method [5].

cls bpf has two distinct modes of operation that need to be
supported, the traditional mode of calling the TC actions, and
the direct action mode as described by Daniel Borkmann at
Netdev 1.1 [2].

Direct action mode involves simply offloading the TC pro-
gram as the actions are expressed through program’s return
codes, whereas when TC actions are called, it is also required
to offload the actions that are being taken (if they are sup-
ported) and later updating their statistics.

If a cls bpf program is added to TC with the
TCA CLS FLAGS SKIP SW flag, then the program will
only be run in hardware, see figure 5. Likewise if the
TCA CLS FLAGS SKIP HW is used, the program will
only be run inside the kernel. If a program has the
TCA CLS FLAGS SKIP SW flag set but it is determined by
the hardware specific JIT not to be supported by the target, an
error will be returned to the user space control application.

In the case of no flag being set, the NFP offload control will
try to run the program in the hardware as well as it being run
in the software, as shown in figure 5. Note that if the program
modifies the packet, there is the possibility of a packet being
modified twice.

There is also the possibility of state inconsistency due to
programs being run in different orders than intended. This
however applies across flower, U32 etc and is not specific to
eBPF and is future work for all the offloads within TC.

XDP
Due to XDP’s the tighter integration with the driver, it is eas-
ier to make use of the bpf applied flag within the packet de-

Figure 5: The flow of a packet to indicate what a series of cls bpf programs would look like when offloaded. Note that due to
space constraints only the full return codes to the first program are shown, otherwise unspecified path is only illustrated

scriptor. This allows a per packet decision about rerunning
the program in the driver. Which in turn simplifies the im-
plementation of an effective fallback path in the driver. The
ability to create effective fallback paths allows ’optimistic of-
fload’, i.e the offload of programs which we may not be able
to execute within the NIC (e.g due to unsupported instruc-
tions on some of the paths) because we can be assured of the
ability to enact fallback path, see figure 6.This can be used
as the basis for the partial offload of programs, if a program
could be split into parts, a subset could be offloaded, with the
rest contained in a fallback path.

A potential improvement to the XDP API that could be
useful would be a set of flags to control offload in a similar
way to TCA CLS FLAGS SKIP SW in cls bpf. Finally due
to the simpler set of return codes, XDP lends itself better to
hardware offload.

Verifier
There are certain operations that the verifier may accept as
they are compatible with the host architecture, which may not
be supported by the offload target. Examples of this include
certain return codes relating to actions (as shown on figure 3
we only support pass, drop and redirect in TC)1.

The mixing of pointers is a difficult case, for example, it
may be appropriate in the host to use a single instruction to
dereference a packet pointer in one flow and a stack pointer
in another flow. However the offload target may use different

1Daniel Borkmann has suggested during discussions a way of
reporting return codes from the driver to TC, which may solve this
problem using the tc verd field of sk buff.

Figure 6: Flow of packet through XDP eBPF program, note
the presence of a per-packet falback path due to per-packet

descriptor field

memories and require different instructions for access.
Given the requirement to do more verification per instruc-

tion, a simple user defined callback was inserted into the
kernel eBPF verifier and the verifier state was exposed in a
header file. Drivers are now enabled to rerun the validation
while performing their own checks. Note that the final full

set of verifier callbacks could be expanded to include two per
instruction calls (pre and post verification) and a state com-
patibility check during path pruning.

Maps
We identified three types of map offload cases based on type
of accesses the offloaded program is performing. Most basic
case is where the map is read only and populated by other
programs or from the user space. Second case is where map
is populated by other programs or from the user space but the
offloaded program performs atomic add operations on exist-
ing elements (most likely gathering statistics). Third case is
where program has read and write access to the map.

From the verification of update calls it is possible to deter-
mine whether a particular program interacts with the map in
a read only, write only or read/write manner. Simple hooks
on read and write paths in map infrastructure should allow
us to reflect written values to maps on the device and pro-
vide read results from them. In read only and write only ac-
cess cases there should be another copy of the map in kernel
space. Write only maps may require gathering of results from
multiple sources and combining them.

Read/write maps are the most complex case since most of-
fload targets are not close enough to the CPU memories to
make it possible to achieve coherency between maps in main
memory/CPU caches and on the device at reasonable update
speeds speeds. Therefore we anticipate that the read/write
maps will have to be explicitly “claimed” by the offloaded
program and subsequent attempts by other non-offloaded pro-
grams to bind to such map must fail. Note that this includes a
case where an offloaded program is being replaced by a non-
offloaded one since the existence of the two will necessarily
overlap. This is because replace is not atomic across CPUs,
even if it was, however, we would still most likely not be able
to evict the map from hardware to CPU memory fast enough
to provide expected replace speed.

Given the limitation and potential unexpected user-visible
behaviour we should only attempt offload of read/write maps
for programs which are explicitly marked as hardware only
(using relevant TC/XDP flags). Hardware only maps will
be marked as such and any other program trying to attach
to them later will fail.

NFP Infrastructure
Bytecode to NFP Assembler Conversion and
Register Allocation
Translation of eBPF instructions to the hardware machine
code is done after the verifier collects relevant instruction
state. Due to the worker CPU cores on the offload target
being 32 bit as opposed to the 64 bit registers mandated by
eBPF there is an optimisation opportunity in identifying 32
bit instructions. This shall significantly improve performance
due to more efficient translation of instructions (less code)
and less register contention. As can be seen in the unopti-
mised example in listings 2 and 3, there is a danger that 32 bit
explosion counts can increase significantly when translating
64 bit instructions.

Listing 2: Simple eBPF Program
BPF_ALU64 | BPF_MOV | BPF_X,6,1,0,0

BPF_LD | BPF_ABS | BPF_W,0,0,0,0x0e

BPF_ALU | BPF_MOV | BPF_K,1,0,0,0xffff

BPF_ALU64 | BPF_AND | BPF_X,0,1,0,0

BPF_EXIT | BPF_K | BPF_JMP,0,0,0,0

Listing 3: Corresponding NFP Assembler
#Check pkt length

alu[--,n$reg_3,-,0x12]

bcc[.1011]

#Read packet from memory

mem[read8,$xfer_0,gprA_15,0xe,4],ctx_swap[sig1]

#Load read values into GPRs and zero extend

alu[gprA_0,--,B,$xfer_0],gpr_wrboth

immed[gprA_1,0x0],gpr_wrboth

#Load constant (and zero extend)

immed[gprA_2,0xffff],gpr_wrboth

immed[gprA_3,0x0],gpr_wrboth

#Perform AND

alu[gprA_0,gprA_0,AND,gprB_2],gpr_wrboth

immed[gprA_1,0x0],gpr_wrboth

#Exit

br[.1014]

Through the use of standard compiler techiniques of
dataflow analysis it should be possible to track which oper-
ations need to be performed on full 64 bit values and which
require only 32 bit results. Attempts to extend the kernel ver-
ifier/analyzer to help with performing this task have already
started. First result of this work will be the introduction of
full liveness analysis in the verifier which is hoped to be pub-
lished soon.

The alternative approach is to move the 32 bit optimization
to the LLVM compiler by introducing a 32 bit eBPF machine
subtype. Exploiting the user space compiler tools has the ob-
vious advantages; however, it takes away some of the trans-
parency and it remains to be seen whether most programs can
even be complied to such a subarchitecture (due to eBPF 32
bit instruction set not being able to express 64 bit instruc-
tions).

There are optimization possibilities stemming from the fact
that the target instruction set allows some instructions to be
merged while performing instruction translation. The NFP
can do bit operations along with shift/mask operations in a
single instruction, as shown in listings 4 and 5. Also the NFP
assembler specifies destination register independently from
source operands (similarly to ARM but unlike x86) therefore
helping to reduce the amount of register to register moves.

Listing 4: eBPF Shift Mask Snippet
BPF_ALU | BPF_SHR | BPF_K,0,0,0,5

BPF_ALU | BPF_AND | BPF_K,0,0,0,0xff

BPF_ALU | BPF_MOV | BPF_X,1,0,0,0

Listing 5: Corresponding Line of NFP Assembler
alu_shf[gpr1, 0xff, AND, gpr0, >>5]

Another area of possible future work is improving regis-
ter allocation to A,B banks (which is an NP-hard problem in

itself). Currently the most optimal brute force method for reg-
ister allocation is to run in 4 context mode, allowing the NFP
to duplicate the eBPF registers in both the A and B banks.
This is acceptable due to the current implementation requir-
ing minimal latency hiding. Over time this may become a
more significant issue and we have an number of proposed
optimizations to the firmware that would address this.

Stack
Placement of the stack may be significantly different within
the NFP depending on the size of required the stack and
the amount of threads used (4 or 8). Also there may
be optimizations around using the stack slot type to deter-
mine placement, e.g prioritising STACK SPILL over other
bpf stack slot type’s. Implementing the stack is one of the
next steps in driver and firmware implementation.

Maps
The implementation of maps will partially rely on hardware
and firmware infrastructure which already exists for the tar-
get. This implies that the hashing and lookup algorithms may
differ from those used in the kernel, it is hoped to be an ac-
ceptable approach. The offloaded maps will be accessible via
firmware control messages.

The map implementation will be reused for some internal
needs like mapping ifindexes for redirect actions to hardware
port IDs2.

Conclusion
cls bpf and XDP are fast and efficient classifiers, however as
time goes on, efficient use of CPU will become more impor-
tant as we move through 10 to 25 or even 100 Gbps. To ensure
that networking is able to cope without an explosion in CPU
usage requires the implementation of an efficient and trans-
parent general offload infrastructure in the kernel. We believe
this is the first step in that direction.
This paper is designed to outline our initial proposals and
prompt feedback; it is by no means a fait accompli. As time
goes on we believe this coprocessor model may become im-
portant to drive more general datapath accelerations as there
are similarities between some of the problems that need to be
solved and various datapath offloads such as OVS and Con-
nection Tracking. This makes it important that this work is
driven in a direction which can be generally applied by other
offloads as well as other hardware. This paper has outlined
some of the challenges (instruction translation, map shar-
ing, code verification) and implemented some solutions to the
required problems, while ensuring that the infrastructure is
reusable. However there is plenty of work to do before the
final goal is in sight.

References
[1] Almesberger, W., Linux Network Traffic Control-

Implementation Overview,
https://www.almesberger.net/cv/papers/tcio8.pdf.

2Mapping ifindexes to port IDs is required for the cls bpf direct
action mode where redirection is setup by a function, parameters of
which may be computed at runtime or taken from a map.

[2] Borkmann, D., On Getting the TC Classifier Fully Pro-
grammable with cls bpf,
NetDev 1.1.

[3] Starovoitov, A et al., Linux Socket Filtering aka Berke-
ley Packet Filter (BPF) Linux Kernel Documentation.

[4] Salim, J.H., Linux Traffic Control Classifier-Action
Subsystem Architecture Netdev 0.1.

[5] Salim, J.H, Bates, L ., The CLASHoFIRES: Who’s Got
Your Back? Netdev 1.1.

[6] OpenNFP.org

